Closest point between two rays
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1 Quick solution

Given a ray with initial point A, direction @ and a ray with initial point B,
direction b, the points at which each vector is at closest proximity to the other
are

where D is the point along d@, F is the point along band &= AB.
The point, which is closest simultaneously to both rays and is at the same
distance between them can be expressed as

D+ FE
2

and the shortest distance between the rays is

-

DE

For consistency, the following conditions should be met

@-a#0
b-b#£0
(5.5)27A(a'-a')(5-5)

See fig. Concept for reference.
The solution is thoroughly covered in the rest of the document.

2 Introduction

In this document we’ll calculate



e Point on a ray, that is closest to another ray
e Closest point between two rays
e Shortest distance between two rays

Note that because we’ll be looking for points of proximity with specific locations,
this solution will not work with collinear rays, for which these points would be
ambiguous, as in such case all points along any of the rays would be at the same
distance from the other ray.

3 Setting

Figure 1: Concept

We have two rays, each having an initial point in space given by its coordi-
nates and a direction, given by a vector.

e Ray with starting point A and direction, given by vector @
e Ray with starting point B and direction, given by vector b

We'll calculate the exact point on each ray, at which it gets closest to the other
ray. The distance between these points is the distance between the rays and
the middle of the segment, defined by these points will give us the closest point
between both rays.

Also, if the distance is zero, then the two points coincide and the the rays
intersect.



4 Solution

Suppose point D, lying along d, is the closest to b.
We can express AD as @, multiplied by some scalar factor, let’s name this factor
d. This way

AD =ad
Analogically, suppose point F, lying along g, is the closest to @ and
BE = be

Finding the two scalar values d and e will solve the problem.

For convenience, let’s have
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Now, let’s see what we have.

The shortest segment between two lines in a three dimensional space is per-

pendicular to both lines and only one such segment exists if the lines are not
parallel. In our case, this means that z'is perpendicular to both @ and b.

Also, obviously, ¢+ be + 7 — ad = 0.

So, let’s write it all down

=0

=0
Gtbe+zZ—ad=0
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We've got three unknowns - d, e, z' and three equations, so we can solve this
equation set and get d and e.

From the third equation, we can express zZ = dad — be — & and get rid of 2
by replacing it in the first two equations with this expression.

G-ad—a-be—a-c=0
@-bd—b-be—b-2=0
For convenience, let’s substitute all the dot products

p=a-b
g=a-c
r=5b-¢
s=a-a
t=b-b



With this, our equation set looks much simpler

sd—pe—q=10
pd—te—r =20
Now, express d from the first equation and e from the second
d= pe + C]7
s
_pd—r
==

s#0

e

t£0

Replace e in the first equation by its expression from the second and replace d
in the second equation by its expression from the first.
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Leave the right side of each equation with no variables
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Leave the left side of each equation with its variable only
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And finally, we have

With the restrictions
s#0

t£0
P> # st



5 Notes

5.1

Restrictions

Looking back at the substitutions we did, let’s take a brief to see what Math is
saying with the restrictions that popped out while solving the equation set.

s#0,or d-a#0. That is |d||d| cos £ (@, @) # 0. With the cosine being
equal to 1, this leads to |G| # 0. And of course, if the length of @ is zero,
it would be a point rather than a vector and our very setting would be
inconsistent.

t # 0 is analogous to s # 0 and means that ‘I_J" #0

o p? £ st, or (a.5)27e @-a) (5-5). That is

5.2

|| ‘I;’ cos £ (d’, I;) || ‘l;‘ cos £ (EL’, l;) #|d||d| 1 ’5’ ‘l;’ 1, which leaves
cos £ (Ei, l;) # 1. In other words, it says @ and b should not be collinear.

This restriction appears, because of the way we’ve formulate our very
question - essentially, we are looking for a specific point on each ray, which
is closest to the other ray. But if both rays are collinear, all points along
the rays would satisfy our request and thus there wouldn’t be a single,
specific answer.

Nevertheless, even in such a case, THERE IS A SPECIFIC DISTANCE.
And if we are looking for the distance, rather than any specific point, it
would be best to formulate our mathematical request in the respective a
manner.

Closest point between both rays

As mentioned, the point, which is closest simultaneously to both rays is at equal
distance from them and is the middle of the segment DE. We can easily find it

as
D+ FE
2
or, with D and E expressed
A+dd+ B+ be
2

5.3

Distance between rays

The distance between the two rays is the distance between points D and F, that
is, the length of Z.



5.4 Distance between initial and closest point

We can easily calculate the distance between the initial point of a ray and the

point, closest to the other ray. It’s simply
% for @ and

< for b
le]

And if the ray vectors are normalized, this leaves only d or e respectively.



